Правила вычитания чисел в степени

Математика

Тестирование онлайн

Сложение чисел

Результат сложения двух или более чисел называется суммой, а сами числа — слагаемыми.

Сумма двух отрицательных чисел. Складываем числа, аналогично положительным, записываем результат со знаком «минус». Например, (-6)+(-5,3)=-(6+5,3)=-11,3.

От перестановки мест слагаемых сумма не изменяется a+b=b+a.

Вычитание чисел

Результат действия называется разностью. Сами числа — уменьшаемое и вычитаемое.

Сложение положительного и отрицательного числа — это не что иное, как вычитание! Мало кто задумывается, что вычитание 7-2 можно представить в виде 7+(-2), получили сложение отрицательного и положительного числа. Для того, чтобы сложить два числа с противоположными знаками, необходимо от большего числа вычесть меньшее, а знак суммы должен совпадать со знаком большего числа.

Умножение чисел

Результат умножения двух или более чисел называется произведением, а сами числа — множителями.

Умножить число а на b — значит найти сумму b слагаемых, каждое из которых равно a.

Например,

Произведение двух чисел одного знака есть число положительное. Например,

Произведение двух чисел с разными знаками есть число отрицательное. Например,

От перестановки множителей значение произведения не изменяется ab=ba.

Законы сложения*

1) Для любых натуральных чисел a и b верно равенство a+b=b+a. Это свойство называют переместительным (коммутативным) законом сложения, который формулируется так: от перестановки слагаемых значение суммы не изменяется.

2) Для любых натуральных a, b и c верно равенство (a+b)+с=a+(b+с). Это свойство называется сочетательным (ассоциативным) законом сложения, который формулируется так: значение суммы не изменится, если какую-либо группу слагаемых заменить их суммой.

Законы умножения*

1) Для любых натуральных чисел a и b верно равенство ab=ba. Это свойство называют переместительным законом умножения, который формулируется так: от перестановки множителей значение произведения не изменяется.

2) Для любых натуральных a, b и c верно равенство (ab)с=a(bс). Это свойство называют сочетательным законом умножения, который формулируется так: значение произведения не изменится, если какую-либо группу множителей заменить их произведением.

3) При любых значениях a, b и c верно равенство (a+b)с=aс+bс. Это свойство называют распределительным (дистрибутивным) законом умножения (относительно сложения), который формулируется так: чтобы умножить сумму на число, достаточно умножить каждое слагаемое на это число и сложить полученные произведения. Аналогично можно записать: (a-b)с=aс-bс.

fizmat.by

Сложение, вычитание, умножение, и деление степеней

Сложение и вычитание степеней

Очевидно, что числа со степенями могут слагаться, как другие величины , путем их сложения одно за другим со своими знаками.

Так, сумма a 3 и b 2 есть a 3 + b 2 .
Сумма a 3 — b n и h 5 -d 4 есть a 3 — b n + h 5 — d 4 .

Коэффициенты одинаковых степеней одинаковых переменных могут слагаться или вычитаться.

Так, сумма 2a 2 и 3a 2 равна 5a 2 .

Это так же очевидно, что если взять два квадрата а, или три квадрата а, или пять квадратов а.

Но степени различных переменных и различные степени одинаковых переменных, должны слагаться их сложением с их знаками.

Так, сумма a 2 и a 3 есть сумма a 2 + a 3 .

Это очевидно, что квадрат числа a, и куб числа a, не равно ни удвоенному квадрату a, но удвоенному кубу a.

Сумма a 3 b n и 3a 5 b 6 есть a 3 b n + 3a 5 b 6 .

Вычитание степеней проводится таким же образом, что и сложение, за исключением того, что знаки вычитаемых должны соответственно быть изменены.

Или:
2a 4 — (-6a 4 ) = 8a 4
3h 2 b 6 — 4h 2 b 6 = -h 2 b 6
5(a — h) 6 — 2(a — h) 6 = 3(a — h) 6

Умножение степеней

Числа со степенями могут быть умножены, как и другие величины, путем написания их одно за другим, со знаком умножения или без него между ними.

Так, результат умножения a 3 на b 2 равен a 3 b 2 или aaabb.

Или:
x -3 ⋅ a m = a m x -3
3a 6 y 2 ⋅ (-2x) = -6a 6 xy 2
a 2 b 3 y 2 ⋅ a 3 b 2 y = a 2 b 3 y 2 a 3 b 2 y

Результат в последнем примере может быть упорядочен путём сложения одинаковых переменных.
Выражение примет вид: a 5 b 5 y 3 .

Сравнивая несколько чисел(переменных) со степенями, мы можем увидеть, что если любые два из них умножаются, то результат — это число (переменная) со степенью, равной сумме степеней слагаемых.

Так, a 2 .a 3 = aa.aaa = aaaaa = a 5 .

Здесь 5 — это степень результата умножения, равная 2 + 3, сумме степеней слагаемых.

Так, a n .a m = a m+n .

Для a n , a берётся как множитель столько раз, сколько равна степень n;

И a m , берётся как множитель столько раз, сколько равна степень m;

Поэтому, степени с одинаковыми основами могут быть умножены путём сложения показателей степеней.

Так, a 2 .a 6 = a 2+6 = a 8 . И x 3 .x 2 .x = x 3+2+1 = x 6 .

Или:
4a n ⋅ 2a n = 8a 2n
b 2 y 3 ⋅ b 4 y = b 6 y 4
(b + h — y) n ⋅ (b + h — y) = (b + h — y) n+1

Умножьте (x 3 + x 2 y + xy 2 + y 3 ) ⋅ (x — y).
Ответ: x 4 — y 4 .
Умножьте (x 3 + x — 5) ⋅ (2x 3 + x + 1).

Это правило справедливо и для чисел, показатели степени которых — отрицательные.

1. Так, a -2 .a -3 = a -5 . Это можно записать в виде (1/aa).(1/aaa) = 1/aaaaa.

2. y -n .y -m = y -n-m .

3. a -n .a m = a m-n .

Если a + b умножаются на a — b, результат будет равен a 2 — b 2 : то есть

Результат умножения суммы или разницы двух чисел равен сумме или разнице их квадратов.

Если умножается сумма и разница двух чисел, возведённых в квадрат, результат будет равен сумме или разнице этих чисел в четвёртой степени.

Так, (a — y).(a + y) = a 2 — y 2 .
(a 2 — y 2 )⋅(a 2 + y 2 ) = a 4 — y 4 .
(a 4 — y 4 )⋅(a 4 + y 4 ) = a 8 — y 8 .

Деление степеней

Числа со степенями могут быть поделены, как и другие числа, путем отнимая от делимого делителя, или размещением их в форме дроби.

Таким образом a 3 b 2 делённое на b 2 , равно a 3 .

Запись a 5 , делённого на a 3 , выглядит как $\frac$. Но это равно a 2 . В ряде чисел
a +4 , a +3 , a +2 , a +1 , a 0 , a -1 , a -2 , a -3 , a -4 .
любое число может быть поделено на другое, а показатель степени будет равен разнице показателей делимых чисел.

При делении степеней с одинаковым основанием их показатели вычитаются..

Так, y 3 :y 2 = y 3-2 = y 1 . То есть, $\frac = y$.

И a n+1 :a = a n+1-1 = a n . То есть $\frac = a^n$.

Или:
y 2m : y m = y m
8a n+m : 4a m = 2a n
12(b + y) n : 3(b + y) 3 = 4(b +y) n-3

Правило также справедливо и для чисел с отрицательными значениями степеней.
Результат деления a -5 на a -3 , равен a -2 .
Также, $\frac<1> : \frac<1> = \frac<1>.\frac <1>= \frac = \frac<1>$.

h 2 :h -1 = h 2+1 = h 3 или $h^2:\frac<1> = h^2.\frac <1>= h^3$

Необходимо очень хорошо усвоить умножение и деление степеней, так как такие операции очень широко применяются в алгебре.

Примеры решения примеров с дробями, содержащими числа со степенями

1. Уменьшите показатели степеней в $\frac<5a^4><3a^2>$ Ответ: $\frac<5a^2><3>$.

2. Уменьшите показатели степеней в $\frac<6x^6><3x^5>$. Ответ: $\frac<2x><1>$ или 2x.

3. Уменьшите показатели степеней a 2 /a 3 и a -3 /a -4 и приведите к общему знаменателю.
a 2 .a -4 есть a -2 первый числитель.
a 3 .a -3 есть a 0 = 1, второй числитель.
a 3 .a -4 есть a -1 , общий числитель.
После упрощения: a -2 /a -1 и 1/a -1 .

4. Уменьшите показатели степеней 2a 4 /5a 3 и 2 /a 4 и приведите к общему знаменателю.
Ответ: 2a 3 /5a 7 и 5a 5 /5a 7 или 2a 3 /5a 2 и 5/5a 2 .

5. Умножьте (a 3 + b)/b 4 на (a — b)/3.

6. Умножьте (a 5 + 1)/x 2 на (b 2 — 1)/(x + a).

7. Умножьте b 4 /a -2 на h -3 /x и a n /y -3 .

8. Разделите a 4 /y 3 на a 3 /y 2 . Ответ: a/y.

www.math10.com

Свойства степени

Напоминаем, что в данном уроке разбираются свойства степеней с натуральными показателями и нулём. Степени с рациональными показателями и их свойства будут рассмотрены в уроках для 8 классов.

Степень с натуральным показателем обладает несколькими важными свойствами, которые позволяют упрощать вычисления в примерах со степенями.

Свойство № 1
Произведение степеней

При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.

a m · a n = a m + n , где « a » — любое число, а « m », « n » — любые натуральные числа.

Данное свойство степеней также действует на произведение трёх и более степеней.

  • Упростить выражение.
    b · b 2 · b 3 · b 4 · b 5 = b 1 + 2 + 3 + 4 + 5 = b 15
  • Представить в виде степени.
    6 15 · 36 = 6 15 · 6 2 = 6 15 · 6 2 = 6 17
  • Представить в виде степени.
    (0,8) 3 · (0,8) 12 = (0,8) 3 + 12 = (0,8) 15

Обратите внимание, что в указанном свойстве речь шла только об умножении степеней с одинаковыми основаниями . Оно не относится к их сложению.

Нельзя заменять сумму (3 3 + 3 2 ) на 3 5 . Это понятно, если
посчитать (3 3 + 3 2 ) = (27 + 9) = 36 , а 3 5 = 243

Свойство № 2
Частное степеней

При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя.

  • Записать частное в виде степени
    (2b) 5 : (2b) 3 = (2b) 5 − 3 = (2b) 2
  • Вычислить.

= 11 3 − 2 · 4 2 − 1 = 11 · 4 = 44
Пример. Решить уравнение. Используем свойство частного степеней.
3 8 : t = 3 4

Ответ: t = 3 4 = 81

Пользуясь свойствами № 1 и № 2, можно легко упрощать выражения и производить вычисления.

    Пример. Упростить выражение.
    4 5m + 6 · 4 m + 2 : 4 4m + 3 = 4 5m + 6 + m + 2 : 4 4m + 3 = 4 6m + 8 − 4m − 3 = 4 2m + 5

Пример. Найти значение выражения, используя свойства степени.

= 2 11 − 5 = 2 6 = 64

Обратите внимание, что в свойстве 2 речь шла только о делении степеней с одинаковыми основаниями.

Нельзя заменять разность (4 3 −4 2 ) на 4 1 . Это понятно, если посчитать (4 3 −4 2 ) = (64 − 16) = 48 , а 4 1 = 4

Свойство № 3
Возведение степени в степень

При возведении степени в степень основание степени остаётся без изменения, а показатели степеней перемножаются.

(a n ) m = a n · m , где « a » — любое число, а « m », « n » — любые натуральные числа.

  • Пример.
    (a 4 ) 6 = a 4 · 6 = a 24
  • Пример. Представить 3 20 в виде степени с основанием 3 2 .

По свойству возведения степени в степень известно, что при возведении в степень показатели перемножаются, значит:

Свойства 4
Степень произведения

При возведении степени в степень произведения в эту степень возводится каждый множитель и результаты перемножаются.

(a · b) n = a n · b n , где « a », « b » — любые рациональные числа; « n » — любое натуральное число.

  • Пример 1.
    (6 · a 2 · b 3 · c ) 2 = 6 2 · a 2 · 2 · b 3 · 2 · с 1 · 2 = 36 a 4 · b 6 · с 2
  • Пример 2.
    (−x 2 · y) 6 = ( (−1) 6 · x 2 · 6 · y 1 · 6 ) = x 12 · y 6

Обратите внимание, что свойство № 4, как и другие свойства степеней, применяют и в обратном порядке.

(a n · b n )= (a · b) n

То есть, чтобы перемножить степени с одинаковыми показателями можно перемножить основания, а показатель степени оставить неизменным.

  • Пример. Вычислить.
    2 4 · 5 4 = (2 · 5) 4 = 10 4 = 10 000
  • Пример. Вычислить.
    0,5 16 · 2 16 = (0,5 · 2) 16 = 1

В более сложных примерах могут встретиться случаи, когда умножение и деление надо выполнить над степенями с разными основаниями и разными показателями. В этом случае советуем поступать следующим образом.

Например, 4 5 · 3 2 = 4 3 · 4 2 · 3 2 = 4 3 · (4 · 3) 2 = 64 · 12 2 = 64 · 144 = 9216

Пример возведения в степень десятичной дроби.

4 21 · (−0,25) 20 = 4 · 4 20 · (−0,25) 20 = 4 · (4 · (−0,25)) 20 = 4 · (−1) 20 = 4 · 1 = 4

Свойства 5
Степень частного (дроби)

Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй.

(a : b) n = a n : b n , где « a », « b » — любые рациональные числа, b ≠ 0, n — любое натуральное число.

  • Пример. Представить выражение в виде частного степеней.
    (5 : 3) 12 = 5 12 : 3 12

Напоминаем, что частное можно представить в виде дроби. Поэтому на теме возведение дроби в степень мы остановимся более подробно на следующей странице.

math-prosto.ru

Науколандия

Статьи по естественным наукам и математике

Свойства степеней с одинаковыми основаниями

Существует три свойства степеней с одинаковыми основаниями и натуральными показателями. Это

  • Произведение двух степеней с одинаковыми основаниями равно выражению, где основание то же самое, а показатель есть сумма показателей исходных множителей.
  • Частное двух степеней с одинаковыми основаниями равно выражению, где основание то же самое, а показатель есть разность показателей исходных множителей.
  • Возведение степени числа в степень равно выражению, в котором основание — это то же самое число, а показатель — это произведение двух степеней.

Будьте внимательны! Правил относительно сложения и вычитания степеней с одинаковыми основаниями не существует.

Запишем эти свойства-правила в виде формул:

  • a m × a n = a m+n
  • a m ÷ a n = a m–n
  • (a m ) n = a mn

Теперь рассмотрим их на конкретных примерах и попробуем доказать.

5 2 × 5 3 = 5 5 — здесь мы применили правило; а теперь представим как бы мы решали этот пример, если бы не знали правила:

5 2 × 5 3 = 5 × 5 × 5 × 5 × 5 = 5 5 — пять в квадрате — это пять умноженное на пять, а в кубе — произведение трех пятерок. В результате получилось произведение пяти пятерок, но это нечто иное как пять в пятой степени: 5 5 .

3 9 ÷ 3 5 = 3 9–5 = 3 4 . Запишем деление в виде дроби:

Ее можно сократить:

В результате получим:

Таким образом мы доказали, что при делении двух степеней с одинаковыми основаниями, их показатели надо вычитать.

Однако при делении нельзя, чтобы делитель был равен нулю (так как на ноль делить нельзя). Кроме того, поскольку мы рассматриваем степени только с натуральными показателями, то не можем в результате вычитания показателей получить число меньше, чем 1. Поэтому на формулу a m ÷ a n = a m–n накладываются ограничения: a ≠ 0 и m > n.

Перейдем к третьему свойству:
(2 2 ) 4 = 2 2×4 = 2 8

Запишем в развернутом виде:
(2 2 ) 4 = (2 × 2) 4 = (2 × 2) × (2 × 2) × (2 × 2) × (2 × 2) = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 = 2 8

Можно прийти к такому выводу и логически рассуждая. Нужно перемножить два в квадрате четыре раза. Но в каждом квадрате две двойки, значит всего двоек будет восемь.

scienceland.info

Вычитание чисел с разными знаками, правило, примеры.

Материал этой статьи покрывает тему вычитание чисел с разными знаками. Здесь мы сначала дадим правило вычитания отрицательного числа от положительного, и положительного числа от отрицательного. После этого подробно разберем решения примеров вычитания чисел с разными знаками.

Навигация по странице.

Правило вычитания чисел с разными знаками

Правило вычитания чисел с разными знаками дословно совпадает с правилом вычитания отрицательных чисел. Его формулировка такова: вычесть из числа a число b – это все равно, что к числу a прибавить число −b , где b и −b – противоположные числа.

В буквенном виде это правило вычитания имеет вид a−b=a+(−b) , где a и b – любые действительные числа.

Озвученное правило вычитания чисел с разными знаками справедливо для действительных чисел, а также для рациональных чисел и целых чисел. Оно доказывается на основании свойств действий с действительными числами. Действительно, эти свойства позволяют записать цепочку равенств вида (a+(−b))+b=a+((−b)+b)=a+0=a , которая в силу существующей связи между сложением и вычитанием доказывает равенство a−b=a+(−b) , а значит, и рассматриваемое правило вычитания.

Правило вычитания чисел с разными знаками позволяет проводить вычитание положительного числа из отрицательного, а также вычитание отрицательного числа из положительного. При этом понятно, что вычитание сводится к сложению.

Осталось научиться применять правило вычитания чисел с разными знаками при решении примеров, что мы и сделаем в следующем пункте.

Примеры вычитания чисел с разными знаками

Рассмотрим примеры вычитания чисел с разными знаками.

Выполните вычитание положительного числа 4 из отрицательного числа −16 .

Число, противоположное вычитаемому 4 , есть −4 , тогда по правилу вычитания чисел с разными знаками имеем (−16)−4=(−16)+(−4) . Осталось выполнить сложение отрицательных чисел, имеем (−16)+(−4)=−(16+4)=−20 .

При вычитании дробных чисел с разными знаками приходится уменьшаемое и вычитаемое представлять либо в виде обыкновенных дробей, либо в виде десятичных дробей. Это зависит от того, с числами какого вида будет удобнее проводить вычисления.

Отнимите −0,7 от 3/7 .

Правило вычитания чисел с разными знаками позволяет нам перейти от вычитания к сложению: . Так вычитание чисел с разными знаками свелось к сложению обыкновенной и десятичной дробей: .

.

Когда уменьшаемое и (или) вычитаемое задано как корень, степень, логарифм, синус, косинус, тангенс, котангенс и т.п., то часто результат вычитания записывается в виде числового выражения. Приведем пример для пояснения.

Выполните вычитание числа 5 из числа .

Вычитаемому 5 противоположно число −5 , тогда по правилу вычитания чисел с разными знаками имеем . Теперь нам нужно выполнить сложение отрицательных чисел, получаем . Полученное выражение и является результатом вычитания исходных чисел с разными знаками.

.

Значение полученного выражения вычисляется только при необходимости с заданной степенью точности. Для получения более подробной информации смотрите статью действия с действительными числами.

www.cleverstudents.ru

Смотрите еще:

  • Масштабирование разрешение Масштабирование интерфейса в Windows — история и проблемы При покупке современного монитора или ноутбука мы очень часто сталкиваемся с тем, что картинка на экране выглядит мелкой, а если в настройках системы поставить масштаб […]
  • Подтверждение стажа при утере трудовой книжки Как восстановить трудовую книжку Обновление: 8 февраля 2017 г. Заявление на восстановление трудовой книжки Ситуации, когда работнику требуется восстановить свою утраченную трудовую книжку, нередки. Перспектива длительного хождения по […]
  • Приказ перевести на неполный рабочий день Перевод на полставки Обновление: 17 мая 2017 г. Образец заявления о переводе на полставки При приеме на работу с сотрудником достигается договоренность об условиях труда, в том числе о режиме работы, рабочего времени, оплате труда и […]
  • Прокурор октябрьского района самары Прокуратуры города Самары Прокуратура города Самары 443030, г. Самара, ул. Красноармейская, 32 Телефон: 339-74-74 Прокурор: Зубко Никита Викторович Прокуратура Железнодорожного района города Самары 443030, г. Самара, ул. Мечникова, […]
  • Нотариусы воронежа московский проспект Нотариусы Воронеж Коминтерновский район Согласно статистике, основанный в 1938 году, Коминтерновский район Воронежа - самый быстро развивающийся район города, с населением более 270 000 человек. Тут работают Воронежский экскаваторный […]
  • Заявление на прописку ребёнка бланк Правила заполнения заявления на регистрацию ребенка по месту жительства – форма №6 Регистрация граждан по месту жительства на территории РФ производится по их личному заявлению. Прописка ребёнка до 14 лет осуществляется на основании […]
  • Водоснабжение учебное пособие Водоснабжение учебное пособие Книги по строительству и ремонту Водоснабжение Водоснабжение дома Водоснабжение от колодца Водоснабжение из скважины Допущено Министерством высшего и среднего специального образовании […]
  • Для работы требуется разрешение adobe flash player Для работы требуется разрешение adobe flash player Сообщения: 3957 Благодарности: 995 Через Панель управления - Удаление программ - удалите нежелательное ПО: Скачайте AdwCleaner (by Xplode) и сохраните его на Рабочем столе. […]