Правило умножения производной

Формулы производных

Что такое производная функция — это основное математическое понятие, находится на одном уровне с интегралами, при анализе. Данная функция в определенной точке дает характеристику скорости изменений функции в данной точке.
Такие понятия как дифференцирование и интегрирование, первое расшифровывается как действие поиска производной, второе наоборот, восстанавливает функцию отталкиваясь от данной производной.
Вычислениям производной отводится важная часть в дифференциальных расчетах.
Для наглядного примера, изобразим производную на координатной плоскости.

в функции у=f(х) фиксируем точки М в которой (х0; f(X0)) и N f (x0+?x) к каждой абсциссе есть приращение в виде ?x. Приращением называется процесс когда изменяется абсцисса, тогда меняется и ордината. Обозначается как ?у.
Найдем тангенс угла в треугольнике MPN используя для этого точки М и N.

tg? = NP/MP = ?у/?x.

При ?x идущем к 0. Пересекающая МN все ближе к касательной МТ и угол ? будет ?. Следовательно, tg ? максимальное значение для tg ?.

tg ? = lim от ?x-0 tg ? = lim от ?x-0 ?у/?x

Таблица производных

Если проговаривать формулировку каждой формулы производных. Таблица будет проще запоминаться.
1) Производная от постоянного значения равняется 0.
2) Х со штрихом равняется единице.
3) Если есть постоянный множитель, просто выносим ео за производную.
4) Чтобы найти производную степень, нужно показатель данной степени умножить на степень с таким же основанием, у которого показатель на 1 меньше.
5) Поиск корня равен одному, деленному 2 этих корня.

В дифференцировании также существуют правила, которые тоже проще выучить проговаривая их в слух.

1) Очень просто, п. слагаемых равняется их сумме.
2) Производная в умножении равняется умножению первого значения на второе, прибавляя к себе умножение второго значения на первое.
3) Производная в делении равняется умножению первого значения на второе, отнимая от себя умножение второго значения на первое. Дробь деления на второе значение в квадрате.
4) Формулировка является частным случаем третьей формулы.

Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

Вот когда на координатной плоскости изображают формулу производной все становится понятно, а у нас преподаватель просто все на словах, сидим как бараны, даже не догадываемся о чем речь то идет. Спасибо вам!

Помню как не хотелось учить эту таблицу производных. Хотя зная ее на память очень даже полезно, на годовом модуле мне пригодились))))))

Помню как не хотелось учить эту таблицу производных. Хотя зная ее на память очень даже полезно, на годовом модуле мне пригодились))))))

Вот как можно вообще эти правила выучить вслух проговаривая?!

Ну не знаю почему вы утверждаете что на одном уровне с интегралами, а получается что интегралы в сто раз сложнее решать чем иметь дело с производными.

reshit.ru

Как найти производную?
Примеры решений

Как найти производную, как взять производную? На данном уроке мы научимся находить производные функций. Но перед изучением данной страницы я настоятельно рекомендую ознакомиться с методическим материалом Горячие формулы школьного курса математики. Справочное пособие можно открыть или закачать на странице Математические формулы и таблицы. Также оттуда нам потребуется Таблица производных, ее лучше распечатать, к ней часто придется обращаться, причем, не только сейчас, но и в оффлайне.

Есть? Приступим. У меня для Вас есть две новости: хорошая и очень хорошая. Хорошая новость состоит в следующем: чтобы научиться находить производные, совсем не обязательно знать и понимать, что такое производная. Более того, определение производной функции, математический, физический, геометрический смысл производной целесообразнее переварить позже, поскольку качественная проработка теории, по моему мнению, требует изучения ряда других тем, а также некоторого практического опыта.
И сейчас наша задача освоить эти самые производные технически. Очень хорошая новость состоит в том, что научиться брать производные не так сложно, существует довольно чёткий алгоритм решения (и объяснения) этого задания, интегралы или пределы, например, освоить труднее.

Советую следующий порядок изучения темы: во-первых, эта статья. Затем нужно прочитать важнейший урок Производная сложной функции. Эти два базовых занятия позволят поднять Ваши навыки с полного нуля. Далее можно будет ознакомиться с более сложными производными в статье Сложные производные. Логарифмическая производная. Если планка окажется слишком высока, то сначала прочитайте вещь Простейшие типовые задачи с производной. Помимо нового материала, на уроке рассмотрены другие, более простые типы производных, и есть прекрасная возможность улучшить свою технику дифференцирования. Кроме того, в контрольных работах почти всегда встречаются задания на нахождение производных функций, которые заданы неявно или параметрически. Такой урок тоже есть: Производные неявных и параметрически заданных функций.

Я попытаюсь в доступной форме, шаг за шагом, научить Вас находить производные функций. Вся информация изложена подробно, простыми словами.

Собственно, сразу рассмотрим пример:

Найти производную функции

Решение:

Это простейший пример, пожалуйста, найдите его в таблице производных элементарных функций. Теперь посмотрим на решение и проанализируем, что же произошло? А произошла следующая вещь: у нас была функция , которая в результате решения превратилась в функцию .

Говоря совсем просто, для того чтобы найти производную функции, нужно по определенным правилам превратить её в другую функцию. Посмотрите еще раз на таблицу производных – там функции превращаются в другие функции. Единственным исключением является экспоненциальная функция , которая превращается сама в себя. Операция нахождения производной называется дифференцированием.

Обозначения: Производную обозначают или .

ВНИМАНИЕ, ВАЖНО! Забыть поставить штрих (там, где надо), либо нарисовать лишний штрих (там, где не надо) – ГРУБАЯ ОШИБКА! Функция и её производная – это две разные функции!

Вернемся к нашей таблице производных. Из данной таблицы желательно запомнить наизусть: правила дифференцирования и производные некоторых элементарных функций, особенно:

производную константы:
, где – постоянное число;

производную степенной функции:
, в частности: , , .

Зачем запоминать? Данные знания являются элементарными знаниями о производных. И если Вы не сможете ответить преподавателю на вопрос «Чему равна производная числа?», то учеба в ВУЗе может для Вас закончиться (лично знаком с двумя реальными случаями из жизни). Кроме того, это наиболее распространенные формулы, которыми приходится пользоваться практически каждый раз, когда мы сталкиваемся с производными.

В реальности простые табличные примеры – редкость, обычно при нахождении производных сначала используются правила дифференцирования, а затем – таблица производных элементарных функций.

В этой связи переходим к рассмотрению правил дифференцирования:

1) Постоянное число можно (и нужно) вынести за знак производной

, где – постоянное число (константа)

Найти производную функции

Смотрим в таблицу производных. Производная косинуса там есть, но у нас .

Самое время использовать правило, выносим постоянный множитель за знак производной:

А теперь превращаем наш косинус по таблице:

Ну и результат желательно немного «причесать» – ставим минус на первое место, заодно избавляясь от скобок:

2) Производная суммы равна сумме производных

Найти производную функции

Решаем. Как Вы, наверное, уже заметили, первое действие, которое всегда выполняется при нахождении производной, состоит в том, что мы заключаем в скобки всё выражение и ставим штрих справа вверху:

Применяем второе правило:

Обратите внимание, что для дифференцирования все корни, степени нужно представить в виде , а если они находятся в знаменателе, то переместить их вверх. Как это сделать – рассмотрено в моих методических материалах.

Теперь вспоминаем о первом правиле дифференцирования – постоянные множители (числа) выносим за знак производной:

Обычно в ходе решения эти два правила применяют одновременно (чтобы не переписывать лишний раз длинное выражение).

Все функции, находящиеся под штрихами, являются элементарными табличными функциями, с помощью таблицы осуществляем превращение:

Можно всё оставить в таком виде, так как штрихов больше нет, и производная найдена. Тем не менее, подобные выражения обычно упрощают:

Все степени вида желательно снова представить в виде корней, степени с отрицательными показателями – сбросить в знаменатель. Хотя этого можно и не делать, ошибкой не будет.

Найти производную функции

Попробуйте решить данный пример самостоятельно (ответ в конце урока). Желающие также могут воспользоваться интенсивным курсом в pdf-формате, который особенно актуален, если у вас в распоряжении совсем мало времени.

3) Производная произведения функций

Вроде бы по аналогии напрашивается формула …., но неожиданность состоит в том, что:

Эта необычное правило (как, собственно, и другие) следует из определения производной. Но с теорией мы пока повременим – сейчас важнее научиться решать:

Найти производную функции

Здесь у нас произведение двух функций, зависящих от .
Сначала применяем наше странное правило, а затем превращаем функции по таблице производных:

Сложно? Вовсе нет, вполне доступно даже для чайника.

Найти производную функции

В данной функции содержится сумма и произведение двух функций – квадратного трехчлена и логарифма . Со школы мы помним, что умножение и деление имеют приоритет перед сложением и вычитанием.

Здесь всё так же. СНАЧАЛА мы используем правило дифференцирования произведения:

Теперь для скобки используем два первых правила:

В результате применения правил дифференцирования под штрихами у нас остались только элементарные функции, по таблице производных превращаем их в другие функции:


Готово.

При определенном опыте нахождения производных, простые производные вроде не обязательно расписывать так подробно. Вообще, они обычно решаются устно, и сразу записывается, что .

Найти производную функции

Это пример для самостоятельного решения (ответ в конце урока)

4) Производная частного функций

В потолке открылся люк, не пугайся, это глюк.
А вот это вот суровая действительность:

Найти производную функции

Чего здесь только нет – сумма, разность, произведение, дробь…. С чего бы начать?! Есть сомнения, нет сомнений, но, В ЛЮБОМ СЛУЧАЕ для начала рисуем скобочки и справа вверху ставим штрих:

Теперь смотрим на выражение в скобках, как бы его упростить? В данном случае замечаем множитель, который согласно первому правилу целесообразно вынести за знак производной:

Заодно избавляемся от скобок в числителе, которые теперь не нужны.
Вообще говоря, постоянные множители при нахождении производной можно и не выносить, но в этом случае они будут «путаться под ногами», что загромождает и затрудняет решение.

Смотрим на наше выражение в скобках. У нас есть сложение, вычитание и деление. Со школы мы помним, что деление выполняется в первую очередь. И здесь – сначала применяем правило дифференцирования частного:

Таким образом, наша страшная производная свелась к производным двух простых выражений. Применяем первое и второе правило, здесь это сделаем устно, надеюсь, Вы уже немного освоились в производных:

Штрихов больше нет, задание выполнено.

На практике обычно (но не всегда) ответ упрощают «школьными» методами:

Найти производную функции

Это пример для самостоятельного решения (ответ в конце урока).

Время от времени встречаются хитрые задачки:

Найти производную функции

Смотрим на данную функцию. Здесь снова дробь. Однако перед тем как использовать правило дифференцирования частного (а его можно использовать), всегда имеет смысл посмотреть, а нельзя ли упростить саму дробь, или вообще избавиться от нее?
Дело в том, что формула достаточно громоздка, и применять ее совсем не хочется.

В данном случае можно почленно поделить числитель на знаменатель.
Преобразуем функцию:

Ну вот, совсем другое дело, теперь дифференцировать просто и приятно:

Найти производную функции

Здесь ситуация похожа, превратим нашу дробь в произведение, для этого поднимем экспоненту в числитель, сменив у показателя знак:

Произведение все-таки дифференцировать проще:

Найти производную функции

Это пример для самостоятельного решения (ответ в конце урока).

5) Производная сложной функции

Данное правило также встречается очень часто. Но о нём рассказать можно очень много, поэтому я создал отдельный урок на тему Производная сложной функции.

Пример 4: . В ходе решения данного примера следует обратить внимание, на тот факт, что и – постоянные числа, не важно чему они равны, важно, что это — константы. Поэтому выносится за знак производной, а .

Пример 7:

Пример 9:

Пример 12:

Автор: Емелин Александр

(Переход на главную страницу)

Качественные работы без плагиата – Zaochnik.com

mathprofi.ru

Производная произведения двух функций

Пусть функции и определены в некоторой окрестности точки и имеют в точке производные. Тогда их произведение имеет в точке производную, которая определяется по формуле:
(1) .

Доказательство

Введем обозначения:
;
.
Здесь и являются функциями от переменных и . Но для простоты записи мы будем опускать обозначения их аргументов.

Далее замечаем, что
;
.
По условию функции и имеют производные в точке , которые являются следующими пределами:
;
.
Из существования производных следует, что функции и непрерывны в точке . Поэтому
;
.

Рассмотрим функцию y от переменной x , которая является произведением функций и :
.
Рассмотрим приращение этой функции в точке :

.
Теперь находим производную:

Итак,
.
Правило доказано.

Вместо переменной можно использовать любую другую переменную. Обозначим ее как x . Тогда если существуют производные и , то производная произведения двух функций определяется по формуле:
.
Или в более короткой записи
(1) .

Пусть являются функциями от независимой переменной x . Тогда
;
;
и т. д. .

Докажем первую формулу. Вначале применим формулу производной произведения (1) для функций и , а затем – для функций и :

Аналогично доказываются другие подобные формулы.

Применяем правило дифференцирования произведения двух функций
(1) .
.

Найти производную функции от переменной x
.

Применяем формулу производной произведения двух функций:
(1) .
.

1cov-edu.ru

Правила вычисления производных

  • Материалы к уроку
  • Скачать все правила

Если следовать определению, то производная функции в точке — это предел отношения приращения функции Δ y к приращению аргумента Δ x :

Вроде бы все понятно. Но попробуйте посчитать по этой формуле, скажем, производную функции f ( x ) = x 2 + (2 x + 3) · e x · sin x . Если все делать по определению, то через пару страниц вычислений вы просто уснете. Поэтому существуют более простые и эффективные способы.

Для начала заметим, что из всего многообразия функций можно выделить так называемые элементарные функции. Это относительно простые выражения, производные которых давно вычислены и занесены в таблицу. Такие функции достаточно просто запомнить — вместе с их производными.

Производные элементарных функций

Элементарные функции — это все, что перечислено ниже. Производные этих функций надо знать наизусть. Тем более что заучить их совсем несложно — на то они и элементарные.

Итак, производные элементарных функций:

Если элементарную функцию умножить на произвольную постоянную, то производная новой функции тоже легко считается:

В общем, константы можно выносить за знак производной. Например:

(2 x 3 )’ = 2 · ( x 3 )’ = 2 · 3 x 2 = 6 x 2 .

Очевидно, элементарные функции можно складывать друг с другом, умножать, делить — и многое другое. Так появятся новые функции, уже не особо элементарные, но тоже дифференцируемые по определенным правилам. Эти правила рассмотрены ниже.

Производная суммы и разности

Пусть даны функции f ( x ) и g ( x ), производные которых нам известны. К примеру, можно взять элементарные функции, которые рассмотрены выше. Тогда можно найти производную суммы и разности этих функций:

Итак, производная суммы (разности) двух функций равна сумме (разности) производных. Слагаемых может быть больше. Например, ( f + g + h )’ = f ’ + g ’ + h ’.

Строго говоря, в алгебре не существует понятия «вычитание». Есть понятие «отрицательный элемент». Поэтому разность f − g можно переписать как сумму f + (−1) · g , и тогда останется лишь одна формула — производная суммы.

Задача. Найти производные функций: f ( x ) = x 2 + sin x; g ( x ) = x 4 + 2 x 2 − 3.

Функция f ( x ) — это сумма двух элементарных функций, поэтому:

f ’( x ) = ( x 2 + sin x )’ = ( x 2 )’ + (sin x )’ = 2 x + cos x;

Аналогично рассуждаем для функции g ( x ). Только там уже три слагаемых (с точки зрения алгебры):

g ’( x ) = ( x 4 + 2 x 2 − 3)’ = ( x 4 + 2 x 2 + (−3))’ = ( x 4 )’ + (2 x 2 )’ + (−3)’ = 4 x 3 + 4 x + 0 = 4 x · ( x 2 + 1).

Ответ:
f ’( x ) = 2 x + cos x;
g ’( x ) = 4 x · ( x 2 + 1).

Производная произведения

Математика — наука логичная, поэтому многие считают, что если производная суммы равна сумме производных, то производная произведения strike «>равна произведению производных. А вот фиг вам! Производная произведения считается совсем по другой формуле. А именно:

( f · g ) ’ = f ’ · g + f · g ’

Формула несложная, но ее часто забывают. И не только школьники, но и студенты. Результат — неправильно решенные задачи.

Задача. Найти производные функций: f ( x ) = x 3 · cos x; g ( x ) = ( x 2 + 7 x − 7) · e x .

Функция f ( x ) представляет собой произведение двух элементарных функций, поэтому все просто:

f ’( x ) = ( x 3 · cos x )’ = ( x 3 )’ · cos x + x 3 · (cos x )’ = 3 x 2 · cos x + x 3 · (− sin x ) = x 2 · (3cos x − x · sin x )

У функции g ( x ) первый множитель чуть посложней, но общая схема от этого не меняется. Очевидно, первый множитель функции g ( x ) представляет собой многочлен, и его производная — это производная суммы. Имеем:

g ’( x ) = (( x 2 + 7 x − 7) · e x )’ = ( x 2 + 7 x − 7)’ · e x + ( x 2 + 7 x − 7) · ( e x )’ = (2 x + 7) · e x + ( x 2 + 7 x − 7) · e x = e x · (2 x + 7 + x 2 + 7 x −7) = ( x 2 + 9 x ) · e x = x ( x + 9) · e x .

Ответ:
f ’( x ) = x 2 · (3cos x − x · sin x );
g ’( x ) = x ( x + 9) · e x .

Обратите внимание, что на последнем шаге производная раскладывается на множители. Формально этого делать не нужно, однако большинство производных вычисляются не сами по себе, а чтобы исследовать функцию. А значит, дальше производная будет приравниваться к нулю, будут выясняться ее знаки и так далее. Для такого дела лучше иметь выражение, разложенное на множители.

Производная частного

Если есть две функции f ( x ) и g ( x ), причем g ( x ) ≠ 0 на интересующем нас множестве, можно определить новую функцию h ( x ) = f ( x )/ g ( x ). Для такой функции тоже можно найти производную:

Неслабо, да? Откуда взялся минус? Почему g 2 ? А вот так! Это одна из самых сложных формул — без бутылки не разберешься. Поэтому лучше изучать ее на конкретных примерах.

Задача. Найти производные функций:

В числителе и знаменателе каждой дроби стоят элементарные функции, поэтому все, что нам нужно — это формула производной частного:


По традиции, разложим числитель на множители — это значительно упростит ответ:

Производная сложной функции

Сложная функция — это не обязательно формула длиной в полкилометра. Например, достаточно взять функцию f ( x ) = sin x и заменить переменную x , скажем, на x 2 + ln x . Получится f ( x ) = sin ( x 2 + ln x ) — это и есть сложная функция. У нее тоже есть производная, однако найти ее по правилам, рассмотренным выше, не получится.

Как быть? В таких случаях помогает замена переменной и формула производной сложной функции:

f ’( x ) = f ’( t ) · t ’, если x заменяется на t ( x ).

Как правило, с пониманием этой формулы дело обстоит еще более печально, чем с производной частного. Поэтому ее тоже лучше объяснить на конкретных примерах, с подробным описанием каждого шага.

Задача. Найти производные функций: f ( x ) = e 2 x + 3 ; g ( x ) = sin ( x 2 + ln x )

Заметим, что если в функции f ( x ) вместо выражения 2 x + 3 будет просто x , то получится элементарная функция f ( x ) = e x . Поэтому делаем замену: пусть 2 x + 3 = t , f ( x ) = f ( t ) = e t . Ищем производную сложной функции по формуле:

f ’( x ) = f ’( t ) · t ’ = ( e t )’ · t ’ = e t · t ’

А теперь — внимание! Выполняем обратную замену: t = 2 x + 3. Получим:

f ’( x ) = e t · t ’ = e 2 x + 3 · (2 x + 3)’ = e 2 x + 3 · 2 = 2 · e 2 x + 3

Теперь разберемся с функцией g ( x ). Очевидно, надо заменить x 2 + ln x = t . Имеем:

g ’( x ) = g ’( t ) · t ’ = (sin t )’ · t ’ = cos t · t ’

Обратная замена: t = x 2 + ln x . Тогда:

g ’( x ) = cos ( x 2 + ln x ) · ( x 2 + ln x )’ = cos ( x 2 + ln x ) · (2 x + 1/ x ).

Вот и все! Как видно из последнего выражения, вся задача свелась к вычислению производной суммы.

Ответ:
f ’( x ) = 2 · e 2 x + 3 ;
g ’( x ) = (2 x + 1/ x ) · cos ( x 2 + ln x ).

Очень часто на своих уроках вместо термина «производная» я использую слово «штрих». Например, штрих от суммы равен сумме штрихов. Так понятнее? Ну, вот и хорошо.

Таким образом, вычисление производной сводится к избавлению от этих самых штрихов по правилам, рассмотренным выше. В качестве последнего примера вернемся к производной степени с рациональным показателем:

( x n )’ = n · x n − 1

Немногие знают, что в роли n вполне может выступать дробное число. Например, корень — это x 0,5 . А что, если под корнем будет стоять что-нибудь навороченное? Снова получится сложная функция — такие конструкции любят давать на контрольных работах и экзаменах.

Задача. Найти производную функции:

Для начала перепишем корень в виде степени с рациональным показателем:

f ( x ) = ( x 2 + 8 x − 7) 0,5 .

Теперь делаем замену: пусть x 2 + 8 x − 7 = t . Находим производную по формуле:

f ’( x ) = f ’( t ) · t ’ = ( t 0,5 )’ · t ’ = 0,5 · t −0,5 · t ’.

Делаем обратную замену: t = x 2 + 8 x − 7. Имеем:

f ’( x ) = 0,5 · ( x 2 + 8 x − 7) −0,5 · ( x 2 + 8 x − 7)’ = 0,5 · (2 x + 8) · ( x 2 + 8 x − 7) −0,5 .

www.berdov.com

Производная произведения и частного функции

Формула производной произведения функции имеет вид .

Формула производной частного функции имеет вид .

Однако было бы наивно надеяться, что на контрольной или экзамене Вам обязательно попадётся пример на нахождение производной такого частного: , где легко подставить простенькое выражение в формулу и выдать правильное решение.

В реальных задачах требуется найти производную таких произведений и частных, в которые вкрались тригонометрические выражения и логарифмы, не говоря уже о множителях (константах), и вообще о том, что может содержать произведение или частное функции. Поэтому примеры нахождения производной произведения и частного функций вынесены в эту отдельную статью.

Пример 1.Найти производную функции

.

Решение. От нас требуется найти производную произведения функций. Прежде всего вынесем множитель 2 за знак производной:

.

Теперь применяем формулу дифференцирования произведения:

Приводим слагаемые в скобках к общему знаменателю:

В числителе первого слагаемого можно заметить знакомое по школьной математике выражение двойного угла:

Существует также известное из школьной математики тождество:

.

Подставляем его в наш промежуточный результат и получаем:

.

Производная данного произведения найдена.

Найти производную произведения функций самостоятельно, а затем посмотреть решение

Пример 2.Найти производную функции

.

Пример 3.Найти производную функции

.

Пример 4.Найти производную функции

Решение. Перед нами сумма частных. Следовательно, каждое слагаемое будет дифференцировано как частное. Применяем правило дифференцирования частного, не забывая, чему равны производные числа(константы) и самой переменной x:

Пример 5.Найти производную функции

Шаг 1. Применим правило дифференцирования частного:

Шаг 2. Находим производную произведения в числителе:

Шаг 3. Находим производную суммы:

Шаг 4. Находим производную функции:

Чтобы избавиться от дроби в числителе, умножаем числитель и знаменатель на x:

Найти производную частного функций самостоятельно, а затем посмотреть решение

Пример 6.Найти производную функции

.

Пример 7.Найти производную функции

.

Пример 8.Найти производную функции

Шаг 1. Применим правило дифференцирования произведения:

Шаг 2. Найдём производную частного, помня, что производная константы равна нулю, а корень из константы является также константой:

Шаг 3. Находим производную арктангенса (формула 12 в таблице производных):

Пример 9.Найти производную функции

Шаг 1. Применим правило дифференцирования частного:

Шаг 2. Дифференцируем по правилам для произведения и показательной функции (формула 17 в таблице производных):

Чтобы избавиться от дроби в числителе, умножаем числитель и знаменатель на :

Вновь настоятельно рекомендуем изучить производную сложной функции.

function-x.ru

Смотрите еще:

  • Мода для юристов Мода для юристов Дуглас Ханд (Douglas Hand) – известный юрист, практикующий в области fashion law, один из партнеров-основателей фирмы HBA в Нью-Йорке, которая представляет интересы таких брендов как Rag & Bone, 3.1 Phillip Lim, […]
  • Выдача судебного приказа госпошлина Госпошлина в суд. Калькулятор госпошлины 2018 Нужна госпошлина в суд? Калькулятор госпошлины 2018 года: Ваш браузер не поддерживает плавающие фреймы! Размер государственной пошлины: 1. Подача искового заявления Имущественного […]
  • Отчет об оценке акции для нотариуса Стоимость оценки акций для нотариуса (вступления в права наследства) Действующая акция: оценка акций (котируемых) для нотариуса (при вступлении в права наследства) 1 000 руб за 1 предприятие-эмитент! оценка акций (НЕ котируемых) […]
  • Была судимость дадут ли разрешение на оружие Получить лицензию на травматическое оружие Как получить лицензию на травматический пистолет с судимостью?Могу ли я получить лицензию на газово-травматический пистолет, если у меня была судимость по двум статьям - нанесение лёгкого […]
  • После слова заявление нужно ставить точку После слова заявление нужно ставить точку Прошу принять меня на должность начальника бюро корреспонденции. В 1979 году я окончила Московский государственный историко-архивный институт. До октября 1991 г. работала в […]
  • Составы суда в гражданском процессе Составы суда в гражданском процессе § 2. Состав суда и отводы 1. Состав суда по административному делу. В соответствии со ст. 28 КАС состав суда для рассмотрения административного дела формируется с учетом нагрузки и специализации […]
  • Жалобы по ст 105 ч 2 ук рф Жалобы по ст 105 ч 2 ук рф Апелляционная жалоба адвоката Кирющенко Т.Ю. по уголовному делу по ст. 105 УК РФ Убийство. Апелляционная жалоба адвоката по уголовному делу по ст. 105 УК РФ "Убийство". АПЕЛЛЯЦИОННАЯ ЖАЛОБА На приговор […]
  • Как проверить свои штрафы перед выездом за границу Как проверить свои долги перед выездом за границу? Выезд за границу должникам может быть ограничен Службой судебных приставов. Чтобы избежать неприятных ситуаций на границе, чтобы отдых не был сорван, и деньги не были потрачены зря, […]