Нормальны закон гаусса

Нормальный закон распределения (закон Гаусса)

Если функция плотности вероятности непрерывной случайной величины Х, принимающей значения в интервале от (-∞;+∞), определяется по формуле:

, (1.31)

то говорят, что случайная величина распределена по нормальномузакону распределения или закону Гаусса.

Параметрами нормального распределения (1.31) случайной величины Х являются математическое ожидание а и среднеквадратическое отклонение .

Нормальный закон распределения широко используется для описания случайной вариации многих реальных показателей в экономике, статистике, коммерции и т.д. Теоретическое обоснование применимости нормального распределения было дано в 1901 году А.М. Ляпуновым. Он показал, что если случайная величина Х является суммой большого числа независимых случайных величин, то её закон распределения будет близок к нормальному закону распределения. Это утверждение называется центральной предельной теоремойтеории вероятностей.

Кривая нормального распределения (рис.3) симметрична относительно прямой, параллельной оси ординат и проходящей через точку х=а и имеет в этой точке единственный максимум, равный . С уменьшением σ кривая становится более вытянутой по отношению к прямой х=а. Изменение апри постоянном σ не меняет формы кривой, а вызывает лишь ее смещение вдоль оси . Площадь, заключенная под кривой нормального распределения, равна единице.

Нормальны закон гаусса

1.3. Теорема Гаусса

Экспериментально установленные закон Кулона и принцип суперпозиции позволяют полностью описать электростатическое поле заданной системы зарядов в вакууме. Однако, свойства электростатического поля можно выразить в другой, более общей форме, не прибегая к представлению о кулоновском поле точечного заряда.

Введем новую физическую величину, характеризующую электрическое поле – поток Φ вектора напряженности электрического поля. Пусть в пространстве, где создано электрическое поле, расположена некоторая достаточно малая площадка Δ S . Произведение модуля вектора на площадь Δ S и на косинус угла α между вектором и нормалью к площадке называется элементарным потоком вектора напряженности через площадку Δ S (рис. 1.3.1):

Рассмотрим теперь некоторую произвольную замкнутую поверхность S . Если разбить эту поверхность на малые площадки Δ S i , определить элементарные потоки Δ Φ i поля через эти малые площадки, а затем их просуммировать, то в результате мы получим поток Φ вектора через замкнутую поверхность S (рис. 1.3.2):

В случае замкнутой поверхности всегда выбирается внешняя нормаль .

Теорема Гаусса утверждает:

Поток вектора напряженности электростатического поля через произвольную замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, деленной на электрическую постоянную ε0.

Для доказательства рассмотрим сначала сферическую поверхность S , в центре которой находится точечный заряд q . Электрическое поле в любой точке сферы перпендикулярно к ее поверхности и равно по модулю

Окружим теперь точечный заряд произвольной замкнутой поверхностью S и рассмотрим вспомогательную сферу радиуса R 0 (рис. 1.3.3).

Рассмотрим конус с малым телесным углом ΔΩ при вершине. Этот конус выделит на сфере малую площадку Δ S 0 , а на поверхности S – площадку Δ S . Элементарные потоки ΔΦ0 и Δ Φ через эти площадки одинаковы. Действительно,

Здесь Δ S’ = Δ S cos α – площадка, выделяемая конусом с телесным углом ΔΩ на поверхности сферы радиуса n .

Так как а следовательно Отсюда следует, что полный поток электрического поля точечного заряда через произвольную поверхность, охватывающую заряд, равен потоку Φ 0 через поверхность вспомогательной сферы:

Обобщение теоремы Гаусса на случай произвольного распределения зарядов вытекает из принципа суперпозиции. Поле любого распределения зарядов можно представить как векторную сумму электрических полей точечных зарядов. Поток Φ системы зарядов через произвольную замкнутую поверхность S будет складываться из потоков Φ i электрических полей отдельных зарядов. Если заряд q i оказался внутри поверхности S , то он дает вклад в поток, равный если же этот заряд оказался снаружи поверхности, то вклад его электрического поля в поток будет равен нулю.

Таким образом, теорема Гаусса доказана.

Теорема Гаусса является следствием закона Кулона и принципа суперпозиции. Но если принять утверждение, содержащееся в этой теореме, за первоначальную аксиому, то ее следствием окажется закон Кулона. Поэтому теорему Гаусса иногда называют альтернативной формулировкой закона Кулона.

Используя теорему Гаусса, можно в ряде случаев легко вычислить напряженность электрического поля вокруг заряженного тела, если заданное распределение зарядов обладает какой-либо симметрией и общую структуру поля можно заранее угадать.

Примером может служить задача о вычислении поля тонкостенного полого однородно заряженного длинного цилиндра радиуса R . Эта задача имеет осевую симметрию. Из соображений симметрии электрическое поле должно быть направлено по радиусу. Поэтому для применения теоремы Гаусса целесообразно выбрать замкнутую поверхность S в виде соосного цилиндра некоторого радиуса r и длины l , закрытого с обоих торцов (рис. 1.3.4).

При r ≥ R весь поток вектора напряженности будет проходить через боковую поверхность цилиндра, площадь которой равна 2π rl , так как поток через оба основания равен нулю. Применение теоремы Гаусса дает:

Этот результат не зависит от радиуса R заряженного цилиндра, поэтому он применим и к полю длинной однородно заряженной нити.

Для определения напряженности поля внутри заряженного цилиндра нужно построить замкнутую поверхность для случая r

В этом случае гауссову поверхность S целесообразно выбрать в виде цилиндра некоторой длины, закрытого с обоих торцов. Ось цилиндра направлена перпендикулярно заряженной плоскости, а его торцы расположены на одинаковом расстоянии от нее. В силу симметрии поле равномерно заряженной плоскости должно быть везде направлено по нормали. Применение теоремы Гаусса дает:

Полученное выражение для электрического поля однородно заряженной плоскости применимо и в случае плоских заряженных площадок конечного размера. В этом случае расстояние от точки, в которой определяется напряженность поля, до заряженной площадки должно быть значительно меньше размеров площадки.

Нормальный закон распределения — введение

Приветствую дорогих читателей и подписчиков блога statanaliz.info. Продолжаем разговор о распределении данных. Как мы знаем, распределение может быть эмпирическим и теоретическим. Эмпирические данные всегда ограничены своей точностью и охватом возможных ситуаций. Поэтому для расчета интересующих вероятностей, пределов отклонений, размеров выборок и т.д. используют теоретические модели распределения случайной величины.

Самая известная статистическо-вероятностная модель – это закон нормального распределения. Нормальный закон, как и другие теоретические распределения, не является фиксированным уравнением зависимости одной переменной от другой. Фиксируется только характер этой зависимости. А вот конкретная форма распределения задается специальными параметрами в этом уравнении.

Например, всем понятно выражение типа у = аx + b – это уравнение прямой. Однако где конкретно она проходит и под каким наклоном, определяется параметрами а и b. Без заданных параметров невозможно четко представить эту линию. Также и с нормальным распределением. Ясно, что это функция, которая описывает тенденцию высокой концентрации значений около центра, но ее точная форма задается специальными параметрами, которые «подгоняют» модель под реальные данные.

Нормальный закон в теории статистики имеет фундаментальное значение. Он также лежит в основе ряда других распределений, поэтому ухватить самую суть желательно сразу. Вначале, возможно, будет слегка мутновато, но потом станет значительно легче, обещаю. Фактически после знакомства с нормальным распределением откроются новые горизонты использования статистических методов. Кстати, собственное логическое мышление под действием статистики также начинает деформироваться, в результате чего, общение с творческими личностями превращается в испытание. Ну да ладно.

Начнем с истории. Рассказываю, как сам слышал. Возможно, где-то перепутаю века, царей или континенты. В общем, я ни разу не историк.

Краткая история открытия нормального закона

История нормального закона насчитывает уже почти 300 лет. Говорят, первым причастным к открытию стал гражданин Абрахам де Муавр, который зафиксировал свои соображения по этому поводу в далеком 1733 году. Речь тогда шла о теоретическом приближении биномиального распределения при большом количестве наблюдений. Однако труды математика не были оценены по достоинству и Абрахама несправедливо забывают, когда речь идет об открытии нормального распределения. Широкое признание нормальный закон получил благодаря анализу выборочных данных.

Сейчас всем известно, что результаты выборочного исследования всегда ошибочны относительно истинного значения, которое исследователь и пытается оценить с помощью выборки. Если провести несколько измерений, то все они, скорее всего, будут отличаться друг от друга и, соответственно, от оцениваемого показателя по генеральной совокупности.

Статистика – наука исключительно практическая. Точность выводов здесь не пустой звук, а одна из насущных задач. В то же время вариация данных не способствует решению проблемы. Например, астрономы, проводя одни и те же наблюдения за небесными телами, все время получали различные результаты. Поначалу они считали, что всему виной их собственная небрежность и старались этот факт не сильно афишировать. Однако вопрос о постоянных отклонениях торчал занозой в ученом месте и не давал покоя пытливым умам тогдашних математиков. Как же быть с тем обстоятельством, что фактически нет возможности получить однозначный результат измерений? Что делать? Куда бежать? И какой из этого следует вывод? (последний вопрос от Ослика Иа).

И вот, эволюция мысли докатилась до того, что в светлую голову гражданина по имени Даниил Бернулли пришла замечательная мысль: разброс данных у самых различных явлений имеет что-то общее. Так, он сравнил разброс отклонений в астрономических наблюдениях с разбросом попаданий лучника в мишень и обнаружил, что и там и там максимальная концентрация результатов приходится на область относительно близкую к среднему значению, в то время как значительные отклонения происходят гораздо реже. Даниил подумал: а с чего бы это? И развивая успех, предложил соответствующий математический закон. Однако на этот раз ему не фартануло – закон оказался неверным. Кстати, этот Даниил был племянником другого Бернулли по имени Якоб. Того самого, который придумал закон больших чисел и процесс своего имени (когда в некотором эксперименте имеют место только два возможных исхода: благоприятный и неблагоприятный).

Тем не менее, идея об универсальном распределении ошибок измерений не осталась не замеченной, и немного позже другие ученые все-таки сформулировали правильный закон о случайных отклонениях. К открытию стали причастны Карл Фридрих Гаусс и Пьер-Симон Лаплас.

Гаусс вывел закон о распределении ошибок, чем и увековечил память о себе названием соответствующей функции (1809 г.). Чуть позже (в 1812 г.) П. Лаплас получил интеграл, который сегодня известен как функция нормального распределения.

Лаплас также обнаружил замечательную закономерность и сформулировал центральную предельную теорему (ЦПТ), согласно которой сумма большого количества малых и независимых величин имеет нормальное распределение. Центральная предельная теорема далее многократно уточнялась и видоизменялась, но суть ее осталась прежней. Таким образом, история открытия нормального закона насчитывает более 200 лет. Начиная от открытия Муавра, до окончательных формулировок ЦПТ в середине 20-го века. На сегодня мы имеем довольно развитый математический аппарат для анализа нормально распределенных данных.

На всякий случай еще раз отмечу, что приведенная выше история – это фривольный пересказ того, что я читал. Для серьезного изучения вопроса лучше обратиться к специализированной литературе.

Закон нормального распределения

Прежде чем погружаться в мир формул, крайне важно получить наглядное представление о предмете. Поэтому предлагаю начать с рисунка, с помощью которого далее будут изложены основные сведения о нормальном законе. Итак, функция плотности нормального распределения, она же функция Гаусса, имеет следующий вид.

Кривая Гаусса по форме несколько напоминает колокол, поэтому график нормального закона часто еще называют колоколообразной кривой. Если вдруг увидите термин «колоколообразная кривая», знайте, что речь идет о нормальном распределении.

Как видно, у графика имеется «горб» в середине и резкое снижение плотности по краям. В этом заключается суть нормального распределения. Другими словами, вероятность того, что случайная величина окажется около центра гораздо выше, чем то, что она сильно отклонится от середины. Смотрим на картинку.

На рисунке выше изображены два участка под кривой Гаусса: синий и зеленый. Основания, т.е. интервалы, у обоих участков равны. Но заметно отличаются высоты. Синий участок удален от центра, и имеет существенно меньшую высоту, чем зеленый, который находится в самом центре распределения. Следовательно, отличаются и площади, то бишь вероятности попадания в обозначенные интервалы.

Теперь посмотрим на формулу, по которой нарисована колоколообразная кривая, т.е. на функцию Гаусса.

Выглядит немного пугающе, но сейчас разберемся. В функции плотности нормального распределения присутствует: две математические константы

π – соотношение длины окружности и его диаметра, равно примерно 3,142;

е – основание натурального логарифма, равно примерно 2,718;

два параметра, которые задают форму конкретной кривой

m — математическое ожидание (в различных источниках могут использоваться другие обозначения, например, µ или a);

ну и сама переменная x, для которой высчитывается значение функции, т.е. плотность вероятности.

Константы, понятное дело, не меняются. Зато параметры — это то, что придает окончательный вид конкретному нормальному распределению. Отсюда и название: параметрическая функция или семейство параметрических функций. Напомню, есть и другие теоретические распределения, но мы сейчас говорим о нормальном.

Итак, конкретная форма нормального распределения зависит от 2-х параметров: математического ожидания (m) и дисперсии (σ 2 ). Кратко обозначается N(m, σ 2 ) или N(m, σ). Параметр m (матожидание) определяет центр распределения, которому соответствует максимальная высота графика. Дисперсия σ 2 характеризует размах вариации, то есть «размазанность» данных.

Параметр математического ожидания смещает центр распределения вправо или влево, не влияя на саму форму кривой плотности, что хорошо видно на самодвижущейся картинке.

А вот дисперсия определяет остроконечность кривой. Когда данные имеют малый разброс, то вся их масса сконцентрирована у центра. Если же у данных большой разброс, то они «размажутся» по широкому диапазону.

Плотность нормального распределения не имеет прямого практического применения (если не считать приближенных расчетов при использовании биномиального распределения). Вероятность того, что случайная величина окажется меньше некоторого значения x, определяется функцией нормального распределения:


Используя свойство непрерывного распределения, несложно рассчитать и любые другие вероятности, так как

Нормальный закон распределения (закон Гаусса)

Нормальное распределение, также называемое распределением Гаусса — распределение вероятностей, которое в одномерном случае задается функцией плотности вероятности:

*

где параметр μ — математическое ожидание, медиана и мода распределения, а параметр σ — стандартное отклонение (σ² — дисперсия) распределения.

* иногда вместо символа μ будет использоваться символ a.

Свойства функции f(x):

1. Областью определения функции f(x) является вся числовая ось.

3. Предел функции f(x) при неограниченном возрастании |х| равен нулю, т. е. ось ОХ является горизонтальной асимптотой графика функции.

4. Функция f a максимум, равный

5°. График функции f(x) симметричен относительно прямой х = а.

6°. Нормальная кривая в точках х = а +s имеет перегиб,

На основании доказанных свойств построим график плотности нормального распределения f(x).

Как видно из рисунка, нормальная кривая имеет колоколообразную форму. Эта форма является отличительной чертой нормального распределения. Иногда нормальную кривую называют кривой Гаусса.

При изменении параметра а форма нормальной кривой не изменяется. В этом случае, если математическое ожидание (параметр а) уменьшилось или увеличилось, график нормальной кривой сдвигается влево или вправо.

При изменении параметра s изменяется форма нормальной кривой. Если этот параметр увеличивается, то максимальное значение функции f(x) убывает, и наоборот. Так как площадь, ограниченная кривой распределения и осью Ох, должна быть постоянной и равной 1, то с увеличением параметра кривая приближается к оси Ох и растягивается вдоль нее, а с уменьшением s кривая стягивается к прямой х=а.

Использование формул f(x) и F(x) для практических расчетов затруднительно. Но решение задач по этим формулам можно упростить, если от нормального распределения с произвольными параметрами а и s перейти к нормальному распределению с параметрами а=0, s = 1.

Функция плотности нормального распределения f(x) с параметрами а=0, s =1 называется плотностью стандартной нормальной случайной величины и ее график имеет вид:

Функция плотности и интегральная функция стандартной нормальной случайной величины будут иметь вид:

Для вычисления вероятности попадания случайных величин в интервал (a, b) воспользуемся функцией Лапласа:

Перейдем к стандартной нормальной случайной величине

Случайная величина Х распределена по нормальному закону. Математическое ожидание и среднее квадратичное отклонение этой величины соответственно равны 30 и 10. Найти вероятность того, что Х примет значение, принадлежащее интервалу (10, 50).

По условию: a =10, b=50, а=30, s =10, следовательно,

По таблице находим Ф (2) = 0,4772. Отсюда, искомая вероятность:

Основные законы распределения

Репетитор: Васильев Алексей Александрович

Предметы: математика, физика, информатика, экономика.

Стоимость: 2000 руб / 90 мин.

Репетитор: Крюков Илья Хассанович

Предметы: математика, экономика, бухгалтерский учет.

Стоимость: 1600 руб / 60 мин.

Репетитор: Скрипаленко Михаил Михайлович

Предметы: математика (ЕГЭ), английский язык (GMAT, GRE (general), GRE subject test in maths, IELTS, TOEFL, BEC).

Стоимость: 1200 руб / 60 мин.

Репетитор: Матвеева Милада Андреевна

Предметы: русский язык, литература (ЕГЭ, ГИА).

Стоимость: 1200 руб / 60 мин.

Репетитор: Тверской Василий Борисович

Предметы: математика, физика.

Стоимость: 3500 руб / 90 мин.

Репетитор: Поздняков Андрей Александрович

Предметы: английский язык, (ЕГЭ). Подготовка к TOEFL и IELTS.

Стоимость: 2000 руб / 60 мин.

Репетитор: Ершикова Марина Львовна

Предметы: бухгалтерский учет (кроме банковского), налогообложение, аудит.

Стоимость: 1500 руб / 60 мин.

1.Биномиальный закон распределения.

Биномиальный закон распределения описывает вероятность наступления события А m раз в n независимых испытаниях, при условии, что вероятность р наступления события А в каждом испытании постоянна.

Например, отдел продаж магазина бытовой техники в среднем получает один заказ на покупку телевизоров из 10 звонков. Составить закон распределения вероятностей на покупку m телевизоров. Построить полигон распределения вероятностей.

В таблице m — число заказов, полученных компанией на покупку телевизора. Сn m — число сочетаний m телевизоров по n, p — вероятность наступления события А, т.е. заказа телевизора, q — вероятность не наступления события А, т.е. не заказа телевизора, P m,n — вероятность заказа m телевизоров из n. На рисунке 1 изображен полигон распределения вероятностей.

2.Геометрическое распределение.

Геометрическое распределение случайной величины имеет следующий вид:

P m — вероятность наступления события А в испытание под номером m.
р — вероятность наступления события А в одном испытании.
q = 1 — p

Пример. В компанию по ремонту бытовой техники поступила партия из 10 запасных блоков для стиральных машин. Бывают случаи, что в партии оказывается 1 блок бракованный. Проводится проверка до обнаружения бракованного блока. Необходимо составить закон распределения числа проверенных блоков. Вероятность того, что блок может оказаться бракованным равна 0,1. Построить полигон распределения вероятностей.

Из таблицы видно, что с увеличением числа m, вероятность того, что будет обнаружен бракованный блок, снижается. Последняя строчка (m=10) объединяет две вероятности: 1 — что десятый блок оказался неисправным — 0,038742049 , 2 — что все проверяемые блоки оказались исправными — 0,34867844. Так как вероятность того, что блок окажется неисправным относительно низкая (р=0,1), то вероятность последнего события P m (10 проверенных блоков) относительно высокая. Рис.2.

3.Гипергеометрическое распределение.

Гипергеометрическое распределение случайной величины имеет следующий вид:

Например, составить закон распределения 7-ми угаданных чисел из 49. В данном примере всего чисел N=49, изъяли n=7 чисел, M — всего чисел, которые обладают заданным свойством, т.е. правильно угаданных чисел, m — число правильно угаданных чисел среди изъятых.

Из таблицы видно, что вероятность угадывания одного числа m=1 выше, чем при m=0. Однако затем вероятность начинает быстро снижаться. Таким образом, вероятность угадывания 4-х чисел уже составляет менее 0,005, а 5-ти ничтожно мала.

4.Закон распределения Пуассона.

Случайная величина Х имеет распределение Пуассона, если закон ее распределения имеет вид:

λ = np = const
n — число испытаний, стремящиеся к бесконечности
p — вероятность наступления события, стремящаяся к нулю
m — число появлений события А

Например, в среднем за день в компанию по продаже телевизоров поступает около 100 звонков. Вероятность заказа телевизора марки А равна 0,08; B — 0,06 и C — 0,04. Составить закон распределения заказов на покупку телевизоров марок А,В и С. Построить полигон распределения вероятностей.

Из условия имеем: m=100, λ 1 =8, λ 2 =6, λ 3 =4 ( ≤10 )

(таблица дана не полностью)

Если n достаточно большое и стремится к бесконечности, а значение p стремится к нулю, так что произведение np стремится к постоянному числу, то данный закон является приближением к биномиальному закону распределения. Из графика видно, что чем больше вероятность р, тем ближе кривая расположена к оси m, т.е. более пологая. (Рис.4)

Необходимо отметить, что биномиальный, геометрический, гипергеометрический и закон распределения Пуассона выражают распределение вероятностей дискретной случайной величины.

5.Равномерный закон распределения.

Если плотность вероятности ϕ(х) есть величина постоянная на определенном промежутке [a,b], то закон распределения называется равномерным. На рис.5 изображены графики функции распределения вероятностей и плотность вероятности равномерного закона распределения.

6.Нормальный закон распределения (закон Гаусса).

Среди законов распределения непрерывных случайных величин наиболее распрастраненным является нормальный закон распределения. Случайная величина распределена по нормальному закону распределения, если ее плотность вероятности имеет вид:

где
а — математическое ожидание случайной величины
σ — среднее квадратическое отклонение

График плотности вероятности случайной величины, имеющей нормальный закон распределения, симметричен относительно прямой х=а, т.е х равному математическому ожиданию. Таким образом, если х=а, то кривая имеет максимум равный:

При изменении величины математического ожидания кривая будет смещаться вдоль оси Ох. На графике (Рис.6) видно, что при х=3 кривая имеет максимум, т.к. математическое ожидание равно 3. Если математическое ожидание примет другое значение, например а=6, то кривая будет иметь максимум при х=6. Говоря о среднем квадратическом отклонении, как можно увидеть из графика, чем больше среднее квадратическое отклонение, тем меньше максимальное значение плотности вероятности случайной величины.

Функция, которая выражает распределение случайной величины на интервале (-∞,х), и имеющая нормальный закон распределения, выражается через функцию Лапласа по следующей формуле:

Т.е. вероятность случайной величины Х состоит из двух частей: вероятности где x принимает значения от минус бесконечности до а, равная 0,5 и вторая часть — от а до х. (Рис.7)

Смотрите еще:

  • Когда вставать на биржу труда после увольнения по сокращению Если вас сократили Внимание граждан, увольняемых из организаций по причине ликвидации организации либо сокращению численности или штата работников! Бланки необходимых документов: Справка о средней заработной плате. Памятка "О […]
  • Действительные правила Математика Тестирование онлайн Натуральные числа Это числа, которые используются при счете: 1, 2, 3. и т.д. Ноль не является натуральным. Натуральные числа принято обозначать символом N. Целые числа. Положительные и отрицательные […]
  • Страховой случай по здоровью Правила страхования жизни и здоровья от несчастных случаев и болезни Страхование – это возможность возмещения нанесенного морального или физического вреда страховому лицу, выраженное в материальных выплатах. Страховой случай – […]
  • Термохимические расчеты по закону гесса Термохимические расчеты по закону гесса 2.7. Теплота реакции. Закон Гесса Разрыв и образование химических связей в ходе реакции сопровождается изменением энергии системы. Разница в энергиях связей в продуктах реакции и исходных […]
  • Правила административного судопроизводства рф Новый старый кодекс, или Чем КАС отличается от ГПК 15 сентября 2015 года в России вступит в силу Кодекс административного судопроизводства Российской Федерации от 8 марта 2015 г. № 21-ФЗ (далее – КАС РФ). Документом будет введен […]
  • Гегель законы диалектики категории Философия Гегеля – вершина классической немецкой философии. Диалектика, знаменитые законы диалектики, были тоже найдены этим великим мыслителем. Георг Вильгельм Фридрих Гегель – годы жизни (1770-1831). Его труды были написаны под […]
  • Правило вид закона Правило вид закона ЭНЕРГИИ СОХРАНЕНИЯ И ПРЕВРАЩЕНИЯ ЗАКОН - общий закон природы: энергия любой замкнутой системы при всех процессах, происходящих в системе, остается постоянной (сохраняется). Энергия может только превращаться из […]
  • Поляков игорь михайлович взял взятку Поляков игорь михайлович взял взятку Управляющий партнер Адвокатского бюро «Правовая гарантия». Регистрационный номер 25/202 в реестре адвокатов Приморского края. Окончил ДВГУ в 1994 г. по специальности «Юриспруденция». Работал в […]